Presynaptic inactivation of action potentials and postsynaptic inhibition of GABAA currents contribute to KA-induced disinhibition in CA1 pyramidal neurons.
نویسندگان
چکیده
Kainate-type glutamate ionotropic receptors (KAR) mediate either depression or potentiation of inhibitory transmission. The mechanisms underlying the depressant effect of KAR agonists have been controversial. Under dual patch-clamp recording techniques in synaptically coupled pairs of CA1 interneurons and pyramidal neurons in hippocampal slices, micromolar concentrations of KAR agonists, kainic acid (KA, 10 microM) and ATPA (10 microM), induced inactivation of action potentials (APs) in 58 and 50% of presynaptic interneurons, respectively. Inactivation of interneuronal APs might have significantly contributed to KA-induced decreases in evoked inhibitory postsynaptic currents (eIPSCs) that are obtained by stimulating the stratum radiatum. With controlled interneuronal APs, KAR agonists induced a decrease in the potency (mean amplitude of successful events) and mean amplitude (including failures) of unitary inhibitory postsynaptic currents (uIPSCs) without significantly changing the success rate (P(s)) at perisomatic high-P(s) synapses. In contrast, KAR agonists induced a decrease in both the P(s) and potency of uIPSCs at dendritic high-P(s) synapses. KAR agonists induced an inhibition of GABA(A) currents by activating postsynaptic KARs in pyramidal neurons; this was more prominent at dendrites than at soma. Both the exogenous GABA-induced current and the amplitude of miniature IPSCs (mIPSCs) were attenuated by KAR agonists. Thus the postsynaptic KAR-mediated inhibition of GABA(A) currents may contribute to the KAR agonist-induced decrease in the potency of uIPSCs and KA-induced disinhibition.
منابع مشابه
The endogenous peptide antisecretory factor promotes tonic GABAergic signaling in CA1 stratum radiatum interneurons
Tonic GABAergic inhibition regulates neuronal excitability and has been implicated to be involved in both neurological and psychiatric diseases. We have previously shown that the endogenous peptide antisecretory factor (AF) decreases phasic GABAergic inhibition onto pyramidal CA1 neurons. In the present study, using whole-cell patch-clamp recordings, we investigated the mechanisms behind this d...
متن کاملElectrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats
Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...
متن کاملAction Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus
Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these in...
متن کاملCell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment.
Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment. J. Neurophysiol. 80: 2836-2847, 1998. Hippocampal sclerosis and hyperexcitability are neuropathological features of human temporal lobe epilepsy that are reproduced in the kainic acid (KA) model of epilepsy in rats. To assess directly the role of inhibitory interneurons in the KA model, the...
متن کاملA Major Role For Tonic GABAA Conductances In Anesthetic Suppression Of Intrinsic Neuronal Excitability
Anesthetics appear to produce neurodepression by altering synaptic transmission and/or intrinsic neuronal excitability. Propofol, a widely used anesthetic, has proposed effects on many targets, ranging from sodium channels to GABAA inhibition. We examined effects of propofol on the intrinsic excitability of hippocampal CA1 neurons (primarily interneurons) recorded from adult rat brain slices. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2004